

Effective from Session:	Effective from Session:								
Course Code	EC301	Title of the Course	Computer Organization and Architecture	L	Т	Р	С		
Year	3rd	Semester	VI	3	1	-	4		
Pre-Requisite	Digital Elex	Co-requisite							
Course Objectives	Computer S	omputer Systems functionality and the interface							

	Course Outcomes
CO1	Students shall be able to understand the Classification and performance evaluation, implementation of memory, and caches,
	ALU implementation, micro-macro programming, control and I/O interfaces.
CO2	The student shall be able to understand the concepts of computer arithmatic operations, ALU and Control unit
	design, Instruction set.
CO3	The students will be able to design the ALU, Control unit design, Instruction set. They will also gain higher
	concepts of Cache/ Memory organizations, DMA and virtual memory.
CO4	The students will be able to understand the importance of systems of memories, programmed I/O and interface to
	the out-side world.
CO5	The students here will learn an overview of OS, Embedded systems, Microco trollers, other vital aspects of systems
	like ARM & RAID.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	COMPUTER BASICS	Int. to Functional Units of Computer, Basic operational concepts of various units, Bus functions and bus architecture, Von Newman model of computing machines, various subsystems, Error Handling and encoding, Parity and parity mechanism, CRC and Hamming Codes, Error detection and correction using codes.	8	CO1
2	COMPUTER ARITHMATIC S	Int. CPU Block diagram details, Arithmetic and Logic Unit (ALU), Integer Representation, Integer Arithmetic, Floating- Point Representation, Floating Point Arithmetic (add, multiply and subtraction). Central Processing Unit: CPU organization, Instruction set, formats, types, Addressing modes, and operations, Control unit: H/W & Micro programmed control unit.	8	CO2
3	CAVHE MEMORY	Computer Memory System Overview, Cache Memory Cache Principles, Elements of Cache Design, Cache organizations, Pentium 4 Cache Organization, Architecture reference manual (ARM) Cache Organization. Internal Memory Technology: Semiconductor Memory, Error Correction, Advanced DRAM Organization.	8	CO3
4	EXTERNAL MEMORY	Magnetic Disk, Redundant array of independent disks (RAID), Optical Memory, Magnetic Tape. Input / Output: External Devices, I/O Modules, Programmed I/O, Interrupt Driven I/O, Direct Memory Access (DMA), I/O Channels and Processors, External Interface.	8	CO4
5	OPERATING SYSTEM SUPPORT	Operating System overview, Types, Scheduling, Memory Management, Pentium Memory Management, ARM Memory Management. Embedded Systems: Examples of Embedded Systems, Microcontrollers Chips, Microcontrollers Embedded Applications, , A simple Microcontroller example.	8	CO5
Referen	ce Books:			
1. Wi	Illiam Stallings, "Coi	nputer Organization and Architecture". Eighth Edition, Pearson		

2. J. P. Hayes, "Computer Architecture and organization", MC Graw Hill

3. Carl Hamacher, ZvonkoVranesic, SafwatZaky, NaraigManjikian, "Computer Organization and Embedded Systems".Sixth Edition, McGraw Hill.

4. Harvey G. Cragon,"Memory System and Pipelined processors"; Narosa Publication.

5. R. K. Ghose, RajanMoona&Phalguni Gupta, "Foundation of Parallel Processing"; Narosa Publications.

6. Kai Hwang and Zu, "Scalable Parallel Computers Architecture"; MGH.

7. V.Rajaranam & C.S.R.Murthy, "Parallel computer"; PHI.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	2	2	1	2	2	1	2				1	1	2	2	2	1	1
CO2	3	3	3	2	1	1			1			2	2	1	2	2	3	2
CO3	3	3	3	2	1	1			1				3	2	3	2	3	2
CO4	3	3	2	2				2					2	3	3	3	3	3
CO5	3	3	2	2					1	2	3	3	2	3	3	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:							
Course Code	EC302	Title of the Course	INTEGRATED CIRCUITS	L	Т	Р	С
Year	III	Semester	V	3	1	0	4
Pre-Requisite	Electronics Devices and Circuits	Co-requisite					
Course Objectives	 To cire Per am To and To che To the sup 	understand the basic cuits and develops ski form signal amplifica plifier replaced by co understand the conce I model various MOS understand and devel eck the stability of fee understand the conce concept of regulated pply.	concepts of the circuit configuration for the design of ill to solve engineering problems. Ation through BJT and MOS and learn the emitter resist instant current source. In the MOSFET and apply the same to understand the based circuits. Iop analytical capability to analyze feedback in amplified back amplifiers and analyze multistage and tuned arr pt of Oscillators and analyze the working of different power supply and study various circuits for generating	linea tance MOS iers an plifie oscilla g regu	r integr in diff charac nd appl rs. ators. T ilated p	rated erentia eteristic by it to Fo stud	1 >s

	Course Outcomes
CO1	To understand the basic concepts of the circuit configuration for the design of linear integrated circuits and develops skill to
	solve engineering problems
CO2	Perform signal amplification through BJT and MOS and learn the emitter resistance in differential amplifier replaced by
	constant current source.
CO3	Student will be able to design mathematical operation using op-amp and OTA.
CO4	Student will be able to design analog multipliers circuit and perform multiplication and division operation and generate the
	square waveform using Multivibrators.
CO5	Student will be able to design the logic gates using TTL,ECL and IIL.Student will be able to design the
	power supply circuit.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Review of Basic Integrated Circuits	Bipolar, NMOS, CMOS and BiCMOS, use of composite structure, cross-section, layout and equivalent circuit for Darlington pair, Differential pair, Multimeter and Multicollector for BJT.	8	CO.1
2	Mirror Curents	BJT and MOS single stage analog amplifiers, differential amplifiers current mirrors and active loads, Widlar,cascaded and Wilson current source, current sources as active loads, Multistage amplifiers, gain and frequency response of the Diiferential amplifier and other characteristics	8	CO.2
3	Operational Tran conductance Amplifier (OTA)	BJT Operational Amplifier, DC analysis and AC analysis of the 741 Op Amp, gain and frequency response, slew rate. Two satge MOS operational amplifier, CMOS Op Amp design, Folded-Cascade load. IC Operational Tranconductance Amplifier (OTA) using BJT and MOS, Applications of Op Amp and OTA, Active Filters.	8	CO.3
4	Multipliers	Analog Multiplier with BJT Gilbert Multiplier (GM) cell. GM cell as a Balanced Modulator and Phase detector. Analog Multiplier using NMOS/CMOS devices, Voltage Controlled Oscillator, ICPLL 560,565, BJT/CMOS Bistable Multivibrators and Schmitt Trigger. BJT/CMOS Monostable and Astable circuits, crystal controlled square wave generators, IC Timer (555) as a Monostable, Asatable Multivibrators.	8	CO.4
5	Logic Families	Formation of basic logic gates (TTL,ECL,IIL)and study of their input-output characteristics, interfacing between logic families . Data converter ICs, Sample and Hold circuit, IC Voltage Regulators, Circuit analysis of 723 and 78/79.	8	CO.5
Referen	ce Books:			

1. Gray, Ilurst, Lewis & Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley.

2. B.Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill.

e-Learning Source:

1.
<u>https://nptel.ac.in</u>

2.
www.youtube.com

-																		
		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2									1	1	2	2			
CO2	3	3	3										3		2	2		
CO3	3	3	3	3	1							1		2	1	3		
CO4	3	3	3	2					1					2	1	3		
CO5	3	3	2	2		1			1				2	2	1			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-17										
Course Code	EC303	Title of the Course Communication System Engineering		L	Т	Р	С			
Year	III	Semester	V	3	1	0	4			
	Electromagnetic									
Pre-Requisite	Field Theory	Co-requisite								
	EC202									
	 Knowledge 	ge about the theory of pro	bability, random process, and optimum detection							
Course	 Knowledge 	ge about the noise and its (effects on the performance of receiver							
Objectives	Knowled	Knowledge about principles and techniques of analog and digital communication systems								
	Knowledge	Knowledge in various methods of analog and digital modulation/demodulation techniques								

	Course Outcomes
CO1	Understand different types of modulation and demodulation
CO2	Student learn the theory of probability, random variables, and understand the effect of noise in the
	communication systems
CO3	Understand different pulse modulation and demodulation techniques
CO4	Understand the basics of information theory, source coding techniques, calculate Entropy of source and efficiency of
	source coder
CO5	Understand the methods to mitigate inter symbol interference

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mappe d CO				
1	Random Process, Random variable & Amplitude Modulation	Random Process & Random variable, correlation function (auto & cross), cumulative distribution function, probability function, joint cumulative & distributive and probability density functions. Elements of Communication Systems, Need of modulation and applications, Amplitude Modulation: Baseband and carrier communication, DSB, SSB, VSB and AM, calculation of BW, modulation index and power, AM Transmitter and Receiver: Balanced modulator, Ring modulator, Carrier Acquisition, Super-heterodyne receiver	8	CO1				
2	Angle Modulation	Types of angle modulation, mathematical representation of FM, frequency spectrum of FM wave, Carson Rule, WBFM, NBFM, Phase modulation. Generation of FM: Direct method, stabilized reactance modulator method, indirect method. FM Receivers: Amplitude limiting, Basic FM Demodulators, Ratio Detector, Pre-emphasis & De-emphasis, Comparison of AM & FM	8	CO2				
3	Noise	External noise; Atmospheric, Extraterrestrial, Industrial noise. Internal Noise: Thermal agitation, Shot, Transit-time noise. Addition of noise due to several sources, Addition of noise due to several Amplifiers in cascade, Noise in Reactive Circuits. Noise Figure: S/N Ratio, Definition of Noise Figure, Calculation of Noise Resistance, Noise temperature, Noise Performance of CW System: Noise in AM, FM & PM	8	CO3				
4	Pulse Communication	Review of sampling process, Pulse Amplitude modulation (PAM) and its spectral analysis, Pulse Width modulation (PWM), Pulse Position modulation (PPM); Modulation and Demodulation; effects of noise. Element Of Digital Communication And Information Theory: Model of a Digital Communication System, Uncertainty, Information, Entropy, Source Coding theorem, Prefix coding, Shannon-Fanno, Huffman Coding, Channel Coding Theorem, Discrete memory less channel, Channel Capacity Theorem.	8	CO4				
5	Waveform Coding Techniques	Pulse Code modulation, Quantization noise and signal to noise ratio, Robust quantization: non uniform quantizer, A-law, µ-law companding, differential pulse code modulation (DPCM), adaptive DPCM, delta modulation(DM): idling noise and slope overload, adaptive delta modulation(ADM), Discrete PAM signals : Line Coding and Its Properties, and their Power Spectra (No Derivation) Inter symbol interference, Nyquist Criterion for distortion-less baseband binary transmission, Raised Cosine Spectrum, Correlation receiver, Matched Filter Receiver, maximum likelyhood estimation.	8	CO5				
Referen	nce Books:							
1. Sim	on Haykin, Commu	nication System, Wiley India						
2. BP	2. BP Lathi, Modern Analog Digital communication, Oxford University Press India							
3. Hay	kin Simon, Digital	Communication Systems, 2005 reprint, John Wiley & Sons India						
4. Tau	ib & Schilling, Princ	iples of communication System, McGraw-Hill						

5.Bernard Sklar, Digital Communications: Fundamentals & Applications, Second Edition, Pearson Education

6. J. F. Kennedy, Electronic communication System, McGraw-Hill

7. Singh & Sapre, Analog Digital communication Systems, McGraw-Hill

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	2	1	1	-	-	-	-	1	3	2	-	1	-	-
CO2	3	3	1	2	2	1	-	-	-	-	-	-	3	-	-	-	-	-
CO3	3	3	2	2	2	1	-	-	-	-	-	-	3	2	-	-	-	-
CO4	3	3	2	1	2	-	-	-	-	-	-	1	3	-	-	1	-	-
CO5	3	3	2	2	2	1	1	1	-	-	-	1	3	2	_	1	-	-

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	:						
Course Code	EC304	Title of the Course	Automatic Control System	L	Т	Р	С
Year	III	Semester	V	3	1	0	4
Pre-Requisite	Mathematics, Basic Electrical Engineering	Co-requisite					
Course Objectives	 To understand the concept systematic approach to int electrical systems and con learn about the representat signal flow graph. To learn the analysis of a sparameters of a system for different types of controlle To learn the analysis of a s Bode Plot. To study the statility by using Rout To understand the concept the system stable by Bode To understand the concept behavior of a system. To understand the concept behavior of a system. 	ts of control system erpret different phy struct the equivalent tion of a system by system in time dom different standard ers. system in frequency ability of the system th Hurwitz Criterior t of compensation a Plot and Root Locu ts of state variables understand the basic	and their applications. To sical systems, mechanical t electrical model of mech transfer function, block re ain and predict the transie inputs. To understand the domain by Polar Plots, N n with location of Poles an n. nd design the suitable con us Method. and its application for det as of Digital Control syste	o prov l syste nanica educti ent pe basic Nyqui nd Ze npens ermin m.	vide a ems ar al syst on me rforma c conce st Plot ros an sator te ning th	nd em. To thod a ance epts of and d study o make ne futu	o .nd y e re

	Course Outcomes								
	Given a system, students shall be able to represent the system in mathematical form, identify type of the system,								
CO1	apply block reduction technique and Mason's Gain formula to obtain the transfer function of the given system, and								
	formulate differential equation to represent the model of a mechanical system into equivalent electrical system and								
	solve using Laplace transform.								
CON	For a given system, student shall be able to analyze and evaluate the system in time domain and predict the								
02	performance in time domain for different standard input signals. Evaluate the steady-state error.								
CO 2	For a given system, student shall be able to analyze the system in frequency domain and explain the nature of								
005	stability. Examine and analyze the stability by Nyquist criterion and Bode Plot.								
	For a given unstable system, students shall be able to identify and select the suitable compensator. To make the								
CO4	system stable select and design the suitable compensator for implementation. To develop the compensator by using								
	Bode Plot and Root Locus.								
	For a given a system, student shall be able to find the mathematical model called state-space representation and will								
COF	be able to understand the conversion between transfer function and state-space model. Solve the system to find the								
05	time response from state-space representation. Analyze the system and obtained the transfer function from state-								
	space model and vice versa.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Control Systems	Basic idea of control systems and their classification. Transfer function of Electrical, Mechanical systems, Feedback and its effect, Mathematical Models of Physical Systems, Analogous Systems, Block Diagram, Signal Flow Graph and Mason's Gain Formula.	8	1
2	Time Domain Analysis	Type and order of the system-Typical Test Signals for the Time response of control system-Unit Step, unit ramp and unit impulse- response of first and second order systems – static and dynamic error coefficients-Basic ideas of Proportional, Derivative, Integral and PID Controllers, Study of electronic controllers.	8	2
3	Stability and Frequency	Concept of stability, Asymptotic and conditional Stability, Routh Hurwitz criterion, Root locus-Basic Theory and Properties of Root locus –	8	3

	Domain	Procedure for construction of Root loci.							
	Analysis	Frequency Domain Analysis- Frequency Response – Frequency Domain							
	, i	Specifications, Correlation between Time and Frequency Response, Polar							
		Plot, Bode Plot, Nyquist Stability Criterion, M and N circle.							
	Design through	Compensation Techniques – Lag compensator – Lead compensator – Lag							
4	Compensation	Lead compensator, Design of Closed Loop Control System using Root	Q	4					
4	Technique	Locus and Bode Pot Compensator.	0	4					
		Introduction, State Space Representation, State Models of Linear Systems,							
		State Equations, State Transfer Matrices, Controllability and Observability.							
5	State Variable	Introduction to digital control Systems, Digital/ Discrete Time System,	8	5					
	Analysis	Linear Discrete System, Difference Equation, Role of z transform in							
		discrete time system.							
Refer	ence Books:								
	1. B.C Kuo	o, Automatic Control System, PHI							
	2. Katsuhil	ko Ogata, Modern Control Engineering, PHI							
	3. I.J.Nagra	ath & M.Gopal, Control System Engineering, New Age International Publisher							
	4. S.K. Bha	attacharya, Control System Engineering, Pearson Education.							
	5. S. Hasar	n Saeed, Automatic Control System, Kataria and sons, New Delhi							
e-Lea	arning Source:								
https	://www.youtube.com	m/@s.h.tutorials							
https	https://onlinecourses.nptel.ac.in/noc19_de04/preview								
https://www.youtube.com/watch?v=RcuGxWc0HyQ									
https://www.youtube.com/watch?v=XMfH2P2Fc6Q									
https	://nptel.ac.in/course	s/107106081							

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	2	1	1	1		1	1			1	3	3	2	1
CO2	3	3	3	2	1	1			1			1	3	3	2	1
CO3	3	3	3	2	1	1			1				3	3	2	1
CO4	3	3	3	2	1				2				3	3	2	1
CO5	3	3	2	2					1				3	3	2	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:							
Course Code	EC305	Title of the Course	Antenna & Wave Propagation	L	Т	Р	С
Year	3	Semester	5	2	1	0	3
Pre-Requisite	NA	Co-requisite	NA				
Course Objectives	 To der. To and To 5 To 6 To 70 To 8 To 8 To 8 To 9 To 9	understand the concept ivation and analysis of r understand the concept parasitic array and der understand the concept analyze the characteristic enna, Corner reflector, f abolic reflector, feed syst define and distinguish b wave), understanding a ct Propagation and Mul	of radiation, antenna definitions and significance of antenna adiation characteristics of Hertzian dipole antennas. of uniform and non uniform arrays, radiation pattern of endf ivation and analysis of Array Factor, HPBW and BWFN of of Pattern multiplication, Binomial Array, Antenna Top Loa ics of Traveling wave antenna, rhombic antenna, Folded dip Helical frequency independent, Log periodic Antenna, Micro stems and Lens Antennas. etween different phenomenon of wave propagation (ground nd derivation of critical frequency, Skip distance, Maximun ti-Hop Propagation.	param ire , bi f anten ding a ole and owave owave wave, u Usab	neters an roadside na array nd tunin d Yagi- Antenr space v le Frequ	nd e, collin ys. ng. Uda ias, wave an uency,	iear id

	Course Outcomes
CO1	Student will have the depth knowledge of principle of electromagnetic radiation, antenna characteristics, parameters and will be able to
	deduce the electric fields and magnetic fields radiated by a alternating current element /Hertzian dipole antenna.
CO2	Student will be able to understand and design the concept of antenna array and will be able to do the analyze /recognize the radiation pattern.
CO3	Student will able to understand, classify and design the different types of practical antennas.
CO4	Student will able to understand and analyze the different type of radio propagation and their effects in atmosphere.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Electromagnetic Field Radiation and Antenna Terminology	Electromagnetic Field Radiation: Radiation from an oscillating current element, short monopole and dipole, half wave dipole, Radiation Pattern, Power Radiated, Radiation Resistance. Antenna Terminology : Antenna theorems, Supervisions, Reciprocity, Isotropic Radiator, Directive gain, Power Gain, Efficiency, Effective Area, Effective Length, Bandwidth, Beam width & Polarization, Directional pattern, Directivities, Effective Length Antenna Impedance.	8	1					
2	Antenna Arrays: Uniform Linear Arrays, Broad side, End fire, Collinear, Parasitic arrays, Binomial arrays, Pattern multiplication. Practical Antenna: VLF, LF, & MF Transmitting antennas, Vertical Radiator, Effect of ground, Grounded Antennas, Grounding systems, Effect of Antenna Height, Antenna Top Loading and tuning, Antenna Array in MF Band. Antenna coupling at medium frequency.	8	2						
3	Types of Antenna	Traveling wave antenna, long wire Harmonic antennas, rhombic antenna, VLF & UHF Antenna: Folded dipole, Yagi- Uda, Corner reflector, Helical frequency independent, Log- periodic Antenna, Microwave Antennas, Parabolic reflector, feed systems and Lens Antennas.	8	3					
4	Radio wave Propagation	8	4						
Referen	ce Books:								
1. Jorda	n E. C. and Balmain K. G	., Electromagnetic Waves And Radiating Systems, Prentice Hall, Reprint, 2010							
2. Hayt	Jr. William H, Engineer	ing Electromagnetics, McGraw Hill							
3. Kraus	ss J. D., Antennas, McG	raw Hill							
4. Paras	d K .D., Antennas and w	ave propagation, Khanna Publications							
5. Chatte	erjee Rajeswari, Antenn	a Theory and Practices, Wiley Eastern							
6. R. Co	6. R. Collin, Antenna and radio wave Propagation, McGraw Hill								
e-Learning Source:									
NPTE	NPTEL :: Electrical engineering- NOC: Electromagnetic								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO-																		
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	1					2						2	1				

CO2	3	1			2			1	1		
CO3	3	1			2			2	1		
CO4	3	1			2			1	1		
CO5	3	1			2			1	1		

Nome & Sign of Drogger Coordinator	Sime & Seel of HoD
Name & Sign of Program Coordinator	Sign & Sear of HoD

Effective from Session:							
Course Code	EC306	Title of the Course	Microelectronics Technology	L	Т	Р	С
Year	III	Semester	V	3	1	0	4
Pre-Requisite	Electronic Devices and Circuits	Co-requisite					
Course Objectives	 Introduction to different type techniques, cleaning of wafer To understand different types oxide furnaces. To understa furnaces. To learn about different phot To learn about different ion profiles. Introduction of chem To study about different fal technology. To know about 	es of integrated circu rs, crystal orientation s of oxidation techniq and the dopant diffus olithography and mas implantation technic nical vapor deposition brication steps of IC fault modeling, and c	its. To learn about the sili and different epitaxial proce- ques, thickness measurement sion processes its models a sk making and pattern transf ques, its equipment, range a n (CVD) and CVD process i such as bipolar IC, MOS haracterization technique	con w ess. of ox ind di er pro ind do n IC f IC, a	vafer p kide an fferent cess. opant d abricat and Bi	d diffe diffus istribution. CMOS	tion rent sion tion

	Course Outcomes											
CO1	Students will be able to identify basic structure of BJT, NMOS, CMOS, BiCMOS Devices. Students will know about Crystal											
	Growth & Silicon wafer preparation, cleaning and crystal orientation and defects.											
CO2	Students shall able to understand different types of oxidation techniques and different oxide furnaces. Students will able to											
	compute the thickness of the oxide. Students will able to understand dielectrics and polysilicon film deposition. Students will able to understand identify different ion implantation equipment and its process											
G03	With dote to undertain different non information of a phone and as distribution of immunities during oritoms. Develop on											
003	understanding about chemical vapor deposition (CVD) and CVD process in IC fabrication.											
CO4	Students will able to compute range and dopant distribution profiles. Student shall be able to select the suitable											
	photolithography. To make mask making learn about pattern transfer process.											
CO5	Student shall be able to explain about fabrication steps of IC such as bipolar IC, MOS IC, and BiCMOS IC technology.											
	To know about fault detection and characterization technique.											

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Digital System	Introduction to Integrated Circuit-Bipolar, MOS, BICMOS, basic circuits and structures, Silicon Wafer preparation and characterization-lapping, polishing, cleaning, resistivity measurement using 4 Point probe, crystal orientation, n-type, p-type, defects in crystal.	8	1
2	Thermal Oxidation	Dry, Wet and Steam oxidation, estimation of oxide layer thickness, furnace for oxidation system, plasma oxidation, dopant distribution at the interface.	8	2
3	Diffusion of Dopant	Diffusion equation, dopant profile for constant source and limited source, diffusion, sheet resistance, diffusion furnace and accessories for solid, liquid and gaseous sources, measurement of sheet resistance.	8	3
4	Ion Implantation	Ion implantation equipment, ion implantation techniques, range and distribution, dopant profile, annealing.	8	4
5	Epitaxy	Epitaxial reactor, Vapor Phase epitaxial processes for doped silicon, donor and acceptor atoms redistribution during epitaxy	8	5
Referen	ce Books:			
•	SZE S M (SE) "VL	SI Technology", Mc Graw Hill International.		
•	Gandhi S, "VLSI fa	brication principles", Wiley Publication.		
•	Campbell S A, "The	e Science and Engineering of Microelectronics fabrication" Oxford University press.		
•	Geiger Randall L, A	llen Phillip E, Stader Noel R, "VLSI Design Technique for Analog and Digital		
e-Lear	ning Source:			

						Cot	ırse Ar	ticulat	ion Matr	ix: (Map	ping of	COs with	n POs and	d PSOs)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	1	2	1	1		1	2				3	2	1	1
CO2	3	1		3	2	1			2		1		3	2	1	
CO3	3	3		1	2	1			1			1	3	2	1	
CO4	3	1	2	3	2	1			1				2	1	1	1
CO5	3	3	2	2	1	1			1				2	1		1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:							
Course Code	EC307	Title of the Course	Title of the Course Semiconductor Fabrication Technology			Р	С
Year	III	Semester	V	3	1	0	4
Pre-Requisite	Electronic Devices and Circuits (EC-201)	Co-requisite					
Course Objectives	 To learn about the silicon w different oxidation process th To understand different type its models and different diffu To learn about different phot To learn about different ion profiles. Introduction of cher To study about different fai technology. To study and ex 	afer preparation technickness measuremen s of epitaxial techniq asion furnaces. olithography and mas implantation technic nical vapor deposition brication steps of IC plain about assembly	niques, cleaning of wafers, t of oxide and different oxid ues. To understand the dopa sk making and pattern transf ques, its equipment, range a n (CVD) and CVD process i c such as bipolar IC, MOS w & packaging of IC technolog	crysta e furn ant dif er pro nd dc n IC f IC, a ogy.	l orien aces. ffusion cess. pant d àbricat ind Bio	tation proces listribution. CMOS	and sses tion IC

	Course Outcomes
CO1	Students will be able to identify about Crystal Growth & Silicon wafer preparation, cleaning and crystal orientation and
	defects. Students shall able to understand different types of oxidation techniques and different oxide furnaces. Students will
	able to compute the thickness of the oxide.
CO2	Students will able to compute different vapor phase epitaxial process and redistribution of impurities during epitaxy.
	Students will able to understand dielectrics and polysilicon film deposition.
CO3	Student shall be able to select the suitable photolithography. To make mask making learn about pattern transfer process.
CO4	Students will able to understand identify different ion implantation equipment and its process. Students will able to compute
	range and dopant distribution profiles.
CO5	Student shall be able to explain about fabrication steps of IC such as bipolar IC, MOS IC, and Assembly & Packaging of
	IC technology.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction, Crystal Growth & Oxidation	 Introduction to Integrated Circuits, Moore's law, monolithic ICs, hybrid ICs. Crystal Growth: MGS, EGS, Czochralski crystal Puller, Float Zone method, Silicon shaping, Wafer Preparation, cleaning, polishing, resistivity measurement, crystal orientation, defects in crystal. Oxidation: Thermal Oxidation Kinetics, Oxidation Techniques, Oxide Properties, Oxidation induced defects. 	8	1
2	Thin film Deposition Techniques	• Thin film deposition techniques: Epitaxy, Vapor Phase epitaxy (VPE), CVD, PECVD, MOCVD, PVD, ALD, Sputtering, MBE and epitaxial layer evaluations.	8	2
3	Lithography & Etching	 Lithography: Mask making, negative and positive photo-resist, Photolithography, E-beam lithography, X-ray Lithography, LIGA Etching: Isotropic and an-isotropic etching, reactive plasma etching, plasma properties, Feature Size control and anisotropic etching, Plasma etching techniques and equipment. 	8	3
4	Diffusion & Ion Implantation	 Diffusion: A Qualitative view of atomic diffusion in Solids, diffusion mechanisms, Fick's one-dimensional diffusion equation, constant source and limited source diffusion, Diffusion of Group 3 and 5 impurities in Silicon Impurity Sources, diffusion apparatus, Characterization of diffused layers. Ion Implantation: Introduction, Range Theory, Implantation Equipment, Annealing. 	8	4
5	Fabrication steps of IC & Assembly & Packaging	 Introduction to surface and bulk micro-machining, Isolation Techniques, Bipolar IC fabrication Process Sequence, N-MOS IC fabrication Process Sequence, C-MOS IC fabrication Process Sequence. Assembly & Packaging: Package Types, design considerations, Package fabrication technologies, Future trends reference to MEMS packaging. 	8	5
Referen	ce Books:			

- Gandhi, VLSI fabrication principles, John Wiley
- S A Cambell, The science and engineering of Microelectronic Fabrication, Oxford University Press
- S M Sze, VLSI technology, McGraw Hill International Student Ed.
- Marc J. Madou, Fundamentals of Microfabrication and Nanotechnology, Third Edition, Three-Volume Set Hardcover, CRC Press.

e-Learning Source:

https://onlinecourses.nptel.ac.in/noc21_ee86/preview

https://youtu.be/366BVdmcUxk

						Cor	ırse Ar	ticulat	ion Matr	ix: (Map	ping of	COs witl	n POs and	d PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3		1	1	1		1	2			2	3	2	1	1
CO2	3	1	1	1	2	1			2		1	2	3	2	1	1
CO3	3	3	1	1	2	1			1			1	3	2	2	1
CO4	3	1	2	2	2	1			1			2	2	1	2	1
CO5	3	3	2	2	1	1			1			2	2	1	2	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:							
Course Code	EC 308	Title of the Course	Computer Organization & Architecture Lab	L	Т	Р	С
Year	III	Semester	V			2	1
Pre-Requisite		Co-requisite					
Course Objectives	Students ma programmin used microco	y understand the basi g. • Teach students en omputer family	c principles about computer architecture, machine langu ough assembly language to enhance their knowledge on t	age, a oday'	nd low s most v	level widely	

	Course Outcomes
CO1	To design and study 2 bit magnitude comparator and also verify multiplexer and de-multiplexer using IC 74153 &
	74155
CO2	To design and study 1 bit memory cell and implement JK and SR Flip Flop using NAND gate and NOR gate and
	verify its truth table
CO3	To design and implement 2*2 bit unsigned multiplier also study the verification of Arithmetic logic unit.
CO4	To Design a MOD 10 asynchronous counter.
CO5	To perform hexadecimal addition and subtraction using 8086 microcontroller kit.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Magnitude Comparator	Design and study of 2 bit magnitude comparator	2	1
2	Memory cell	Design and study of 1 Bit memory cell.	2	1
3	Unsigned multiplier	Design and study of 2*2 bit unsigned multiplier circuit using 2 half adder and AND Gate.	2	2
4	S-R & J-K Flip Flop	Study of S-R & J-K Flip Flop using NAND gates and verification of their truth.	2	2
5	Multiplexer and de- multiplexer	Study and verify the truth table of multiplexer and de-multiplexer using 74153 & 74155.	2	3
6	S-R Flip- Flop	Design and implementation of S-R Flip- Flop using NOR gates and Verification of its truth table.	2	3
7	Arithmetic and Logic Unit	Study and verification of Arithmetic and Logic Unit.	2	4
8	Asynchronous counter	Design of MOD 10 Asynchronous counter.	2	4
9	Hexadecimal addition	Hexadecimal addition of two numbers using 8086 kit.	2	5
10	Hexadecimal subtraction	Hexadecimal subtraction of two numbers using 8086 kit.	2	5
e-Lear	ning Source:			
https:/	//www.youtube.com/wa	atch?v=Ol8D69VKX2k		
https:/	//www.youtube.com/wa	atch?v=L9X7XXfHYdU		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO																		
CO1	3	1	3	0	0	0	0	0	3	0	0	1	3	2	1			
CO2	3	2	3						3			1	3					
CO3	3	3	3	1	1				3				3	2	1			

CO4	3	3	2						3			1	3					
CO5	3	2	2	1	1				3			1	3	2	1			
	1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation																	
	Name & Sign of Program Coordinator													Sign a	& Seal of H	łoD		

Effective from Session:													
Course Code	EC309	Title of the Course	Integrated Circuit-Lab	L	Т	Р	С						
Year	III	Semester	V	0	0	2	2						
Pre-Requisite	Mathematics, Basic Electronics Engineering	Co-requisite											
Course Objectives	 To understand the concepts of To learn the analysis of a single To understand the concepts of To understand the concept of I To understand the basic concept 	Phase Locked Loop le stage MOS ampli Operational Ampli Multivibrators. pts logic families an	p (PLL). ifier and constant current fier. nd acquire knowledge of v	sourc voltag	e. ge regu	ılator.							

	Course Outcomes										
CO1	To understand the basic concepts of the circuit configuration for the design of linear integrated										
COI	circuits and develops skill to solve engineering problems										
CO2	Perform signal amplification through BJT and MOS and learn the emitter resistance in differential										
02	amplifier replaced by constant current source.										
CO3	Student will be able to design mathematical operation using op-amp and OTA.										
CO4	Student will be able to design analog multipliers circuit and perform multiplication and division operation										
04	and generate the square waveform using Multivibrators.										
CO5	Student will be able to design the logic gates using TTL, ECL and IIL.										
005	Student will be able to design the power supply circuit.										

Unit No.	Experiment No.	Content of Unit	Contact Hrs.	Mapped CO
1	1	Study and measurement of op amp parameter such as CMRR, offset volage, Bias current, Slew rate, frequency response and gain.	2	1
2	2	Design and study the op-amp as voltage to current and current to voltage converter.	2	1
3	3	Design and study the operation of a digital to analog converter using R-2R ladder.	2	2
4	4	Design and study the operation of analog to digital converter	2	2
5	5	Plot transfer characteristics if Schmitt Trigger and study the effect of dynamic comparison.	2	3
6	6	Design and study the op-amp as an Integrator and differentiator.	2	3
7	7	To study the Phase Locked Loop (PLL) using IC-565 and measure lock range and capture range.	2	3
8	8	Design and study the 2nd order low pass and high pass Butterworth Filter of 1Khz cutoff frequency, plot its frequency response002E	2	4
9	9	Design a voltage regulator using IC 723 for 10V output. Plot the output Voltage vs Input voltage characteristics.	2	4
10	10	Design astable and mono stable multivibrator using IC 555 Timer, for an Astable multivibrator determine the positive pulse width, negative pulse width and free running frequency.	2	5
11	11	Design frequency multiplier using Phase Locked Loop IC 565 and IC 7490	2	5

e-Learning Source:

https://www.vlab.co.in/broad-area-electronics-and-communications

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	1	3			2			3			1	1	2		4
CO2	3	2	3						3			1	1		3	4
CO3	3	3	2	2	1				3			1	1	2		4
CO4	3	3				1			3			1	1	2		4
CO5	3	2		1	1			3	3			1	1	2		4

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:												
Course Code	EC310	Title of the Course	Communication-1 Lab	L	Т	Р	C					
Year	III	Semester	V	0	0	2	2					
Pre-Requisite	Mathematics, Basic Electrical Engineering	Co-requisite										
Course Objectives	 To practice the basic theories To understand various Modu and frequencydomain, to Comp techniques To impart hands on experien signals and generateDSB-SC si To understand the radiation p 	s of analog commu lation and Demod orehend Pulse anal ce and train the stu gnal using balance pattern of Dipole a	unication system. Iulation techniques in tin log Modulation and Der udents to SSB, DSB, DS ed und Yagi- UdaAntenna	ne de nodu SB-S	omain ılatior C	1						

Course Outcomes								
CO1	Develop the knowledge of Amplitude Modulation using a transistor (BJT) and determine the depth of							
COI	modulation.							
CO2	Develop the knowledge of an envelop detector for demodulation of AM signal and observediagonal							
02	peak clipping effect.							
CO3	Develop the knowledge of Frequency Modulation using voltage controlled oscillator.							
	Develop the knowledge of SSB, DSB, DSB-SC signals and generate DSB-SC signal using balanced							
CO4	modulator and generate the SSB signal and draw the output waveform using balanced							
	modulator, Reconstruct the original signal from SSB signal							
CO5	Develop the knowledge of Phase Lock Loop and detector of FM signal using PLL, radiation pattern of							
	Dipole Antenna and Yagi- Uda Antenna							

Unit No.	Experiment No.	Content of Unit	Contact Hrs.	Mapped CO	
1	1	To study amplitude modulation using transistor (BJT) & determinedepth	2	1	
1	L	of modulation	2	1	
2	2	To study DSB, DSB-SC signals and generate DSB-SC signal using	2	1	
2	2	balanced modulator.	2	1	
3	3	Generate the SSB signal and draw the output waveform using balanced	2	3	
5	5	modulator. Reconstruct the original signal from SSB signal	2	5	
1	1	To study envelop detector for demodulation of AM signal and observe	2	2	
4	Т	diagonal peak clipping effect.	2	2	
5	5	Study of radiation pattern of Phase-Array Antenna.	2	1	
6	6	Study of radiation pattern of Dipole Antenna.	2	5	
7	7	Study of radiation pattern of Yagi-Uda Antenna	2	5	
e-Lea	arning Source:				
https:	//www.vlab.co.in/b	road-area-electronics-and-communications			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	1	3						3			1	1	2		4
CO2	3	2	3						3			1	1		3	4
CO3	3	3	2	2	1				3			1	1	2		4
CO4	3	3							3			1	1	2		4
CO5	3	2		1	1				3			1	1	2		4

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:												
Course Code	EC311	Title of the Course	L	Т	Р	С						
Year	III	Semester	V	0	0	2	2					
Pre-Requisite	Mathematics, Basic Electrical Engineering	Co-requisite										
Course Objectives	 The main objective of system simu MATLAB and Scilab. To study and understand by experi To study and analyze the transient circuit. To study the transfer function of the To understand the concepts of vari 	ilation lab is to provid ments the various typ response of series RL ie control system by u ous ladder logic prog	le the basic concepts of cont es of controllers. C circuit and lag network for using MATLAB. ramming for different applic	rol system or corr	stem by	y using	the					

	Course Outcomes
CO1	Student shall be able to identify the open loop and closed loop system.
CO2	Student shall be able to understand the response of first and second order system through MATLAB.
CO3	For a given system the student shall be to understand the concept and responses of different control system.
CO4	Student shall be able to understand the response of controllers.
CO5	For a given system the student shall be to understand the stability by root locus through MATLAB and Scilab.

Unit No.	Experiment No.	Content of Unit	Contact Hrs.	Mapped CO
1	1	To study the performance characteristics of a dc motor speed control system (a) open loop (b) closed loop.	2	1
2	2	To study P, PI, and PID temperature controller for an oven and compare their performance.	2	2
3	3	To determine the transient response of series RLC circuit and also compare theoretical and practical results	2	3
4	4	To study the phase lag network and also plot the graph.	2	4
5	5	To simulate a DC motor (Armature control) system and draw the characteristics of the angular velocity using MATLAB.	2	1
	6	Plot the impulse, step and ramp response of a given transfer function using MATLAB and determine peak overshoot and peak time.	2	3
	7	To analyze the stability of given transfer function using Bode/Root- locus/Nyquist plot and find the gain margin and phase margin using MATLAB.	2	3
	8	To study the time response of a variety of simulated linear system and to correlate the studies with theoretical results:(a). Error detector cum gain.(b). Integrator.(c). Time constant.	2	5
	9	 Draw Ladder logic to transfer liquid one container to another container with given conditions: (a). If temperature is proper and tank is not empty the pump remains off. (b). If temperature is not proper but tank is empty then pump remains off. (c). If both are proper then pump on for 20 sec. otherwise pump remains off. 		

	10	Draw a ladder logic container for a pump which start by a push button to fill the tank with fluid. When tank 1(T1) IS FUII, the PLC should automatically start filling the tank 2 (T2) by closing valve V1and opening free valve V2and when tank 2 (T2) is full then pump will be disconnected automatically and sign lamp L is turned on to show both tank are full.									
Reference Books:											
	1. B.C Kuc	o, Automatic Control System, PHI									
	2. Katsuhik	co Ogata, Modern Control Engineering, PHI									
	3. I.J.Nagra	ath & M.Gopal, Control System Engineering, New Age International Publisher									
	4. S.K. Bha	attacharya, Control System Engineering, Pearson Education.									
	5. S. Hasan	Saeed, Automatic Control System, Kataria and sons, New Delhi									
e-Lea	arning Source:										
https:	://www.vlab.co.in/b	road-area-electronics-and-communications									
http://	http://vlabs.iitb.ac.in/vlab/										
https:	https://vlab.amrita.edu/										
http:	//ial-coep.vlabs.ac.	in/									
http://	//plc-coep.vlabs.ac.i	n/									

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	3	3	2	2		2	2	1	1		3	3	3	1
CO2	3	3	3	3	2	2		2	2	1	1		3	3	3	1
CO3	3	3	3	3	2	2		2	2		1		3	3	2	1
CO4	3	3	3	3	2	2		2	2	1	1		3	2	3	
CO5	3	3	3	3	2	2		2	2	1	1		3	3	3	1

Name & Sign of Program Coordinator Sign & Seal of HoD